3.683 \(\int \frac{\cos ^7(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=68 \[ -\frac{(a-a \sin (c+d x))^6}{6 a^7 d}+\frac{4 (a-a \sin (c+d x))^5}{5 a^6 d}-\frac{(a-a \sin (c+d x))^4}{a^5 d} \]

[Out]

-((a - a*Sin[c + d*x])^4/(a^5*d)) + (4*(a - a*Sin[c + d*x])^5)/(5*a^6*d) - (a - a*Sin[c + d*x])^6/(6*a^7*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0628442, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {2667, 43} \[ -\frac{(a-a \sin (c+d x))^6}{6 a^7 d}+\frac{4 (a-a \sin (c+d x))^5}{5 a^6 d}-\frac{(a-a \sin (c+d x))^4}{a^5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^7/(a + a*Sin[c + d*x]),x]

[Out]

-((a - a*Sin[c + d*x])^4/(a^5*d)) + (4*(a - a*Sin[c + d*x])^5)/(5*a^6*d) - (a - a*Sin[c + d*x])^6/(6*a^7*d)

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^7(c+d x)}{a+a \sin (c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int (a-x)^3 (a+x)^2 \, dx,x,a \sin (c+d x)\right )}{a^7 d}\\ &=\frac{\operatorname{Subst}\left (\int \left (4 a^2 (a-x)^3-4 a (a-x)^4+(a-x)^5\right ) \, dx,x,a \sin (c+d x)\right )}{a^7 d}\\ &=-\frac{(a-a \sin (c+d x))^4}{a^5 d}+\frac{4 (a-a \sin (c+d x))^5}{5 a^6 d}-\frac{(a-a \sin (c+d x))^6}{6 a^7 d}\\ \end{align*}

Mathematica [A]  time = 0.187619, size = 66, normalized size = 0.97 \[ -\frac{\sin (c+d x) \left (5 \sin ^5(c+d x)-6 \sin ^4(c+d x)-15 \sin ^3(c+d x)+20 \sin ^2(c+d x)+15 \sin (c+d x)-30\right )}{30 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^7/(a + a*Sin[c + d*x]),x]

[Out]

-(Sin[c + d*x]*(-30 + 15*Sin[c + d*x] + 20*Sin[c + d*x]^2 - 15*Sin[c + d*x]^3 - 6*Sin[c + d*x]^4 + 5*Sin[c + d
*x]^5))/(30*a*d)

________________________________________________________________________________________

Maple [A]  time = 0.072, size = 65, normalized size = 1. \begin{align*}{\frac{1}{da} \left ( -{\frac{ \left ( \sin \left ( dx+c \right ) \right ) ^{6}}{6}}+{\frac{ \left ( \sin \left ( dx+c \right ) \right ) ^{5}}{5}}+{\frac{ \left ( \sin \left ( dx+c \right ) \right ) ^{4}}{2}}-{\frac{2\, \left ( \sin \left ( dx+c \right ) \right ) ^{3}}{3}}-{\frac{ \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{2}}+\sin \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^7/(a+a*sin(d*x+c)),x)

[Out]

1/d/a*(-1/6*sin(d*x+c)^6+1/5*sin(d*x+c)^5+1/2*sin(d*x+c)^4-2/3*sin(d*x+c)^3-1/2*sin(d*x+c)^2+sin(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.03408, size = 90, normalized size = 1.32 \begin{align*} -\frac{5 \, \sin \left (d x + c\right )^{6} - 6 \, \sin \left (d x + c\right )^{5} - 15 \, \sin \left (d x + c\right )^{4} + 20 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )^{2} - 30 \, \sin \left (d x + c\right )}{30 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/30*(5*sin(d*x + c)^6 - 6*sin(d*x + c)^5 - 15*sin(d*x + c)^4 + 20*sin(d*x + c)^3 + 15*sin(d*x + c)^2 - 30*si
n(d*x + c))/(a*d)

________________________________________________________________________________________

Fricas [A]  time = 1.09109, size = 122, normalized size = 1.79 \begin{align*} \frac{5 \, \cos \left (d x + c\right )^{6} + 2 \,{\left (3 \, \cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{2} + 8\right )} \sin \left (d x + c\right )}{30 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/30*(5*cos(d*x + c)^6 + 2*(3*cos(d*x + c)^4 + 4*cos(d*x + c)^2 + 8)*sin(d*x + c))/(a*d)

________________________________________________________________________________________

Sympy [A]  time = 74.0354, size = 1096, normalized size = 16.12 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**7/(a+a*sin(d*x+c)),x)

[Out]

Piecewise((30*tan(c/2 + d*x/2)**11/(15*a*d*tan(c/2 + d*x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/
2 + d*x/2)**8 + 300*a*d*tan(c/2 + d*x/2)**6 + 225*a*d*tan(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*
d) - 30*tan(c/2 + d*x/2)**10/(15*a*d*tan(c/2 + d*x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/2 + d*
x/2)**8 + 300*a*d*tan(c/2 + d*x/2)**6 + 225*a*d*tan(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*d) + 7
0*tan(c/2 + d*x/2)**9/(15*a*d*tan(c/2 + d*x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/2 + d*x/2)**8
 + 300*a*d*tan(c/2 + d*x/2)**6 + 225*a*d*tan(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*d) + 156*tan(
c/2 + d*x/2)**7/(15*a*d*tan(c/2 + d*x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/2 + d*x/2)**8 + 300
*a*d*tan(c/2 + d*x/2)**6 + 225*a*d*tan(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*d) - 100*tan(c/2 +
d*x/2)**6/(15*a*d*tan(c/2 + d*x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/2 + d*x/2)**8 + 300*a*d*t
an(c/2 + d*x/2)**6 + 225*a*d*tan(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*d) + 156*tan(c/2 + d*x/2)
**5/(15*a*d*tan(c/2 + d*x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/2 + d*x/2)**8 + 300*a*d*tan(c/2
 + d*x/2)**6 + 225*a*d*tan(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*d) + 70*tan(c/2 + d*x/2)**3/(15
*a*d*tan(c/2 + d*x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/2 + d*x/2)**8 + 300*a*d*tan(c/2 + d*x/
2)**6 + 225*a*d*tan(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*d) - 30*tan(c/2 + d*x/2)**2/(15*a*d*ta
n(c/2 + d*x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/2 + d*x/2)**8 + 300*a*d*tan(c/2 + d*x/2)**6 +
 225*a*d*tan(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*d) + 30*tan(c/2 + d*x/2)/(15*a*d*tan(c/2 + d*
x/2)**12 + 90*a*d*tan(c/2 + d*x/2)**10 + 225*a*d*tan(c/2 + d*x/2)**8 + 300*a*d*tan(c/2 + d*x/2)**6 + 225*a*d*t
an(c/2 + d*x/2)**4 + 90*a*d*tan(c/2 + d*x/2)**2 + 15*a*d), Ne(d, 0)), (x*cos(c)**7/(a*sin(c) + a), True))

________________________________________________________________________________________

Giac [A]  time = 1.28969, size = 90, normalized size = 1.32 \begin{align*} -\frac{5 \, \sin \left (d x + c\right )^{6} - 6 \, \sin \left (d x + c\right )^{5} - 15 \, \sin \left (d x + c\right )^{4} + 20 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )^{2} - 30 \, \sin \left (d x + c\right )}{30 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/30*(5*sin(d*x + c)^6 - 6*sin(d*x + c)^5 - 15*sin(d*x + c)^4 + 20*sin(d*x + c)^3 + 15*sin(d*x + c)^2 - 30*si
n(d*x + c))/(a*d)